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Mathematics Education has at its core a conception of the mathematical 
performances that represent the aspirations of the mathematics classroom 
and curriculum. These performances are constituted through teacher and 
student participation in the activities stimulated by mathematical tasks 
selected by the teacher for the realization of an instructional purpose. In this 
nexus of activity, intention, interpretation and consequence, the 
mathematical task occupies a central place. This Research Forum provides 
an opportunity to explore and reflect upon the role that mathematical tasks 
play in the achievement of the goals of the international mathematics 
education community. Further, consistent with current curricular and 
theoretical priorities, the agency, attributes and activities of the student are 
foregrounded in the discussion of the instructional use of mathematical 
tasks. The contributors to this Research Forum represent a wide variety of 
theoretical perspectives and report research undertaken in different school 
systems and different cultures. These different perspectives offer a useful 
exploration of the theme: Mathematical Tasks and the Student. 

RATIONALE 
Attempts to model the complexity of the mathematics classroom have 
generated increased interest in theories capable of accommodating 
consideration of artifacts1 as well as individuals. Theories such as Activity 
Theory (Engeström, 1987) and Distributed Cognition (Hutchins, 1995) 
foreground the mediational role of artifacts in facilitating learning, and locate 
tasks among those mediating artifacts. 

Mediating artifacts might be mathematics textbooks, digital technologies, 
as well as tasks and problems, [and] language (Rezat & Strässer, 2012). 

                                                
1 Either artifact or artefact are acceptable spellings to denote “arte factum” (Latin) as 
something made through the use of skill. We have employed Rezat and Strässer’s (2012) 
spelling in this proposal, which also corresponds to North American usage. 



 

Rezat and Strässer (2012) identify the students’ mathematics-related activity as 
an example of the Vygotskian conception of an instrumental act, where the 
student’s interaction with mathematics is mediated by artifacts, such as 
mathematical tasks. Most importantly, recognizing the function of 
mathematical tasks as tools for the facilitation of student learning leads us to 
the further recognition that (à la Vygotsky) the use of a tool (i.e. a task) 
fundamentally affects the nature of the facilitated activity (i.e. student 
learning). Rezat and Strässer (2012) have re-conceptualized the familiar 
didactical triangle (teacher-student-mathematics) as a socio-didactical 
tetrahedron, where the vertices are teacher, student, mathematics and mediating 
artifacts. This reconception of didactical relationships recognizes that the 
connections represented by the sides of the original didactical triangle require 
mediation. The vehicles of this mediation are artifacts, which include 
everything from textbooks and IT tools to tasks and language. Use of the socio-
didactical tetrahedron provides us with an important tool by which to give 
recognition to the mediational role of tasks in the teaching and learning of 
mathematics. 
One virtue of the socio-didactical tetrahedron is that it facilitates the separate 
consideration of the triangles forming each face of the tetrahedron and the 
vertices of each of those triangles. In this Research Forum, we focus attention 
on the task as mediating artifact and address the question of how the resultant 
socio-didactical tetrahedron (Fig. 1) might structure our consideration of 
research into the function of tasks in facilitating student learning and into the 
dynamic between student and task. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The socio-didactical tetrahedron (Rezat & Strässer, 2012) 
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To paraphrase Rezat and Strässer (2012, p. 645): Each of the triangular faces of 
the tetrahedron stands for a particular perspective on the role of tasks within 
mathematics education: the didactical role of the teacher is best described as an 
orchestrator of student mathematical activity as represented by the triangle 
teacher-task-student (Face A); the triangle student-task-mathematics represents 
the student’s task-mediated activity of learning mathematics (Face B); the 
triangle teacher-task-mathematics depicts the teacher’s task-mediated activity 
of representing mathematics in an instructional setting (Face C); the original 
didactical triangle constitutes the base of the model (i.e. student-teacher-
mathematics) (Face D). The tetrahedral structure offers an important 
representation of the complexity of classroom teaching/learning that affords a 
level of detailed reflection on the didactical role of tasks. In utilizing this more 
complex conception of the instructional use of mathematical tasks, significant 
agency is accorded to each component (student, teacher, mathematics and task) 
in the determination of the actions and outcomes that find their nexus in the 
social situation for which the task provides the pretext.  
Research into the design and use of mathematical tasks in instructional settings 
must accommodate student intentions, actions and interpretations to at least the 
same extent as those of the teacher. Research in this area is important, but 
fragmented. This Research Forum brings a variety of research studies together 
into a discussion intended to yield a more coherent picture and has been 
designed to assist in structuring the field of task-related research and to equip 
researchers to better situate the student within research on instructional task 
design. 
Goals framing the Research Forum: 

(i) To present research into the instructional use of mathematical 
tasks, with a specific focus on the associated student activity and 
the implications for task design, classroom practice and the 
mathematics curriculum internationally; 

(ii) To focus attention specifically on the agency of the student during 
the completion of mathematical tasks in educational settings and 
examine the performative expression of this agency in different 
settings and in response to different task types; 

(iii) To highlight, through the reporting of selected research studies, 
particular issues associated with the instructional use of 
mathematical tasks, including: teacher intentionality, student 
interpretation, implicit and actual task contexts, considerations of 



 

task sequence, and the distinction between the stated task and its 
realization as a social activity involving teacher and students; 

(iv) To bring together researchers from a variety of countries, who 
share an interest in both the instructional use of mathematical 
tasks and the intended and resultant student activity; 

(v) To draw to the attention of PME members some of the issues 
associated with the instructional use of mathematical tasks, 
particularly those arising from the assumptions implicit in 
different instructional theories, which may conceive the 
instructional purposes of mathematical tasks and optimal student 
activity very differently. 

The Research Forum has been structured around the following issues: 
(i) Differences in the instructional deployment and function of 

mathematical tasks and the nature of student task participation in 
different instructional settings; 

(ii) Utilizing mathematical tasks to promote higher order thinking 
skills; 

(iii) Differences in the theoretical frameworks by which the 
instructional use of mathematical tasks might be better understood 
(particularly from the perspective of the student) and thereby 
optimized; 

(iv) The accommodation of student agency within the instructional use 
of mathematical tasks. 

Each issue can be usefully addressed in the form of a question. 
 
Focus Question 1. What are the possible functions of a mathematical task in 
different instructional settings and how do these functions prescribe the nature 
of student task participation? 
Focus Question 2. What contingencies affect the effectiveness of a 
mathematical task as a tool for promoting student higher order thinking skills? 
Focus Question 3. How might we best theorize and research the learning 
processes and outcomes arising from the instructional use of any mathematical 
task or sequence of tasks from the perspective of the student? 
Focus Question 4. What differences exist in the degree of agency accorded to 
students in the completion of different mathematical tasks and with what 
consequences? 
The sequencing of the forum contributions constitutes a research narrative 
aligned with the issues listed above and structured by the socio-didactical 



 

tetrahedron already discussed. It is the construction of structure within 
substantial research diversity that provides a key motivation for this Research 
Forum. 

ISSUE ONE: DIFFERENCES IN THE FUNCTION OF 
MATHEMATICAL TASKS AND THE NATURE OF STUDENT 
TASK PARTICIPATION IN DIFFERENT INSTRUCTIONAL 
SETTINGS 

Making distinctions in task design and student activity 
Alf Coles and Laurinda Brown 

University of Bristol 
The design principles below have developed during the time of our 
collaboration, over a period of fifteen years (e.g., Brown and Coles, 1997). 
The principles are drawn both from the enactivist theory of cognition and 
learning (Varela, Thompson and Rosch, 1991) and the pedagogic ideas of 
Gattegno (1987). We developed these principles within a community centred 
around one school (School S) in the Bristol area of the UK. Laurinda made 
this school her main research site and visited, where possible, weekly. We 
focus on one particular community in the spirit of ‘particularization’ 
(Krainer, 2011, p.52), to draw out general principles from an in-depth study 
of one case. Our data comes from transcripts of video recordings of lessons 
as well as the scheme of work of School S. 
We believe task design that centres around activities that provoke 
differences in student response can allow the opportunity for students to 
make mathematical distinctions and for teachers to introduce new skills. Our 
task design principles are: 

• starting with a closed activity (which may involve teaching a new 
skill). 

• considering at least two contrasting examples (where possible, 
images) and collecting responses on a ‘common board’. 

• asking students to comment on what is the same or different about 
contrasting examples and/or to pose questions. 

• having an open-ended challenge prepared in case no questions are 
forthcoming. 

• introducing language and notation arising from student distinctions. 
• opportunities for students to spot patterns, make conjectures and 

work on proving them (hence involving generalising and algebra). 



 

• opportunities for the teacher to teach further new skills and for 
students to practice skills in different contexts. 

Our data analysis indicates these design principles operate to inform: (1) 
teacher planning, (2) teaching actions in the classroom and (3) students’ 
mathematical activity. Firstly, the principles inform teacher planning. For 
example, the offer of contrasting examples (principle 2) can be used to focus 
students on mathematical distinctions, from which questions and challenges 
can be generated that provoke further work with that distinction. Secondly, 
we have evidence from video recordings that, over time, our design 
principles inform teacher actions in the classroom. In particular, the 
principles seemed to support teachers in School S adapting tasks in the light 
of student responses. Thirdly, there is evidence from transcripts that the 
principles can inform (implicitly) student actions in the mathematics 
classroom; through making distinctions, students notice and extend patterns, 
they ask questions and generalize (principle 6).  
There is a significant problem, identified in the literature, around the student 
experience of tasks compared to the intentions of the designer or teacher 
(Watson and Mason, 2007). Mason, Graham and Johnston-Wilder (2005, 
p.131) raise the issue of how an expert’s awarenesses get translated into 
instructions for the learner that do not lead to those same awarenesses.  
Our results indicate that the making of distinctions within mathematics can 
become a habit and a normal way of engaging in tasks for students. Creating 
opportunities for students to make distinctions within mathematics can also 
become a habit for teachers and a normal way of both planning activity and 
informing decisions in the classroom. When this happens, there is a 
convergence of planned and actual activity. With a focus on distinctions, 
there is a potential route out of the problems highlighted by Mason et al. 
(2005) around the divergence of teacher intention and student activity. With 
a focus on distinctions, the expert (teacher) can plan, initially via the choice 
of examples, to support students in making the same distinctions as a 
mathematician, leading to the same awarenesses. 

Order of tasks in sequences of early algebra2 
Joaquin Giménez*; Pedro Palhares**; Leonel Vieira** 

                                                
2 Work partially funded by Ministry of Economy & Competitivity of Spain. EDU2012-
32644. 



 

*Barcelona University; **Institute of Education, University of Minho 

Rationale 
It is assumed that epistemic and cognitive aspects are fundamental to build 
sequences of tasks. We investigated different aspects that appear when we 
analyse the process as a teaching experiment and examined how teacher 
intentions evolved according to interactional and ecological suitability. 
Our research focused on student-related aspects influencing the ordering of 
tasks and how student responses are accommodated, using the case of early 
algebra. It is well known that structured investigative activities provide 
opportunities for meaningful learning of mathematical concepts. We 
consider task design as a crucial element of the learning environment, and 
describe a teaching experiment in which class discussion introduces 
unexpected new perspectives to an initial a priori instructional scheme. Our 
perspective relates to Realistic Mathematics Education, where the designer 
conducts anticipatory thought experiments by envisioning both how 
proposed instructional activities might be realized in the classroom, and 
what students might learn as they engage in them. 
Framework and Methodology 
It is important for our design process, a task analysis, to identify difficulty 
factors providing frameworks for hypothetical designs inspired initially by 
developmental cognition according to levels of abstraction. We decided to 
choose an early algebra task as the basis for a situated study supporting the 
perspective in which algebraic reasoning could be strongly promoted as a 
tool intertwined with arithmetic building through their interconnection in 
order to promote success by developing both arithmetic and algebra 
together, one implicated in the development of the other (Smith, 2011). The 
study supporting this paper has been done with two classes of 8-9 years old 
students. The basis for building our sequence of tasks and test analysis was 
to promote algebraic thinking by overcoming relational apprehension and 
the use of patterns in connection with a search for order or structure.  
Therefore regularity, repetition and symmetry are frequently present because 
of their relevance to the development of abstraction, generalization and the 
establishment of relations. Next step concerns the experimental task design 
process based upon a refined sequence of tasks. The principles for our task 
design are the following: (1) ensure the possibility of using arithmetic 
number sense related to algebraic reasoning; (2) apply suitability criteria for 
analysing mathematical activities; (3) use mathematical examples, using 



 

relations and diversity of representations but not letters for the unknowns; 
(4) prioritise the voice of the students for analyzing and promoting 
mathematisation and retention. The tasks were meant to be diverse, some 
leading to an exploratory and investigative open activity to improve 
meaningful construction. In our study, we considered one class solving 6 
sequential tasks and then six structural tasks and another class solving six 
structural tasks and then six sequential tasks (Palhares, Giménez & Vieira, 
2013). A typical sequential task would ask the student to “Observe carefully 
the sequence of numbers: 6, 10, 14, 18, 22, . . . What will be the 20th term of 
the sequence? . . . Explain how you found the 20th term of the sequence. Will 
the number 63 be part of this sequence of numbers? Justify your answer.” A 
typical structural task would ask students to “Observe carefully the four 
‘number machines’ (shown below). Replace the question mark with a 
number that follows the rule of the other three machines.” 

 
The research design focused directly on the consequences of task sequence. 
Results and Final Comments 
Statistical results show that there are significant differences starting with 
sequential or with structural tasks. Sequential tasks are better for starters and 
apparently provide a solid foundation for the work with structural tasks. The 
study is a first step for reconsidering the tasks for the next redesign stage in 
which a new cycle of testing could lead to small or big changes in task 
sequence. It is clear that students who started with the sequential tasks 
seemed to be capable of establishing broad generalizations, when the other 
group could not. These findings argue for redesigning in terms of stability 
and improving connectivity in self-regulation processes as synthesis 
activities. Also, the group that started with sequential tasks appeared to 
retain their performance more robustly as stable across time. The experiment 
did not consider any modelling situations from the real world. We assume 
that this would improve and enrich not only structural, but sequential 
examples in providing students with new learning experiences.  



 

Tasks to promote holistic flexible reasoning about simple additive 
structures 

Annie Savard*, Elena Polotskaia*, Viktor Freiman** & Claudine 
Gervais*** 

*McGill University, **Université de Moncton, ***Commission scolaire des 
Grandes-Seigneuries 

Our team is conducting a 3-year research project funded by the Quebec 
Ministry of Education on additive problem solving in early grades of 
elementary school. The goals of the project are: 1) to develop a pedagogical 
approach that would promote holistic and flexible reasoning about simple 
additive structures; 2) to design and test a set of tasks and didactical 
scenarios that implements the new approach; 3) to propose a related teacher 
professional development program. Our research team consists of two 
researchers (Savard and Freiman), a designer (Polotskaia), and a school 
board consultant responsible for the teachers’ professional development 
(Gervais).  We want to support teachers to guide their students on solving 
additive structures problems. 
There are two paradigms in which additive problem solving can be seen. The 
Operational Paradigm puts the focus on addition and subtraction as 
arithmetic operations. From this position, additive word problems can be 
seen as exercises where the knowledge about arithmetic operations can be 
applied or further developed. Contemporary research (Thevenot, 2010) 
shows that some problems are particularly difficult because they require a 
flexible and holistic analysis of their mathematical structure while easy 
problems do not require such analysis.  
The Relational Paradigm, appears in the work of Davydov (1982) and more 
recent studies (Iannece, Mellone, & Tortora, 2009). According to Davydov 
(1982), the concept of additive relationship  is, “the law of composition by 
which the relation between two elements determines a unique third element 
as a function” (p. 229). Davydov (1982) advanced the premise that an 
adequate understanding of the additive relationship is the basis for the 
learning of addition and subtraction and should be taught prior to 
calculation. The analysis of the additive relationships present in the situation 
yields the following task design principles: 
1. The task should be based on a situation involving a simple additive 

relationship between three quantities. 



 

2. The task should involve students in the mathematical analysis of the 
described relationship as a whole. It should help students to discover 
different properties of the relationship, and to see how different 
arithmetic operations can be used in the described situation for different 
purposes.   

3. The task should use a socio-cultural context in which students can 
identify themselves as active agents. 

4. The task should not contain any explicit and immediate questions that 
could be answered by finding one particular number. This criterion is to 
prevent students from immediately calculating the answer. However, the 
task should include an intriguing element, which would support students’ 
natural interest and commitment. 

5. The goal of the task, which is learning to analyze the situation, should be 
explicitly communicated to students. 

6. The text of the task should be very short and should contain simple words 
and expressions that the students are familiar with. 

7. The mathematical discussion of the situation should integrate appropriate 
graphical representations as a method of analysis. 

We provide here one example of the task that we named 360° situation to 
highlight the main goal – holistic analysis of the mathematical structure of 
the situation. This is an example of a text proposed to students. 

Peter, Gabriel and Daniel are playing marbles. Peter says, “I 
have 5 marbles.” Gabriel says, “I have 8 marbles.” Daniel 
says, “Peter has 4 marbles less than Gabriel”. 

We introduce this text as a strange situation or as a situation where one of 
the persons made a mistake. Students are invited to explain why the text is 
unrealistic and how it can be corrected considering different quantities 
involved. The objective of the first is to make explicit the fact that all three 
quantities are related to each other and that the choice of two values implies 
one (and only one) third value. At the next step, we invite students to 
construct a graphical representation, which can support discovering of the 
appropriate arithmetic operations. Each quantity should be evaluated to 
figure out a correct numeric value in the condition where the other two 
quantities are fixed. At this step, the formal use of arithmetic operations can 
be discussed.  Finally, the numbers in the text can be replaced with different 
ones to further generalise the initially discussed quantitative relations. This 
will complete the 360° tour around the situation. 



 

The teachers we worked with had a tendency to return to the traditional 
teaching behaviours as soon as they start to work with traditional problems. 
For example, once the numerical answer was found for the problem, the 
discussion of the problem often ended abruptly. Thus, the focus of the 
activity was often shifted towards the use of the correct representation or the 
calculation of the numerical answer. A one year follow-up provided for each 
teacher-participant was needed for a sustainable change in teaching habits. 
 
ISSUE TWO: UTILIZING MATHEMATICAL TASKS TO 
PROMOTE STUDENTS’ HIGHER ORDER THINKING SKILLS 

Hybrid tasks: Promoting student statistical thinking and critical 
thinking through the same mathematical activities 

Einav Aizikovitsh-Udi*, Sebastian Kuntze** & David Clarke*** 

*Beit Berl College, Israel; **Ludwigsburg University of Education, 
Germany; ***University of Melbourne, Australia 

In a well-known definition of Statistical Literacy by Gal (2004), a “critical 
stance” is included among the key attitudes for successful statistical thinking 
(ST) – hence, Gal includes such attitudes in his definition of statistical 
literacy. However, being critical in statistical contexts is not only an attitude. 
It is possible to describe specific abilities that have to be used in order to 
critically evaluate statistical data. Two key concepts or overarching ideas in 
statistical thinking relevant for a critical evaluation of data are manipulation 
of data by reduction and dealing with statistical variation. 
Critical thinking (CT) skills rely on self-regulation of the thinking processes, 
construction of meaning, and detection of patterns in supposedly 
disorganized structures (Ennis, 1989). Critical thinking tends to be complex 
and requires the use of multiple, sometimes mutually contradictory criteria, 
and frequently concludes with uncertainty. This description of CT already 
suggests links with ST, such as dealing with uncertainty, contradictions and 
a critical evaluation of given claims. Dealing critically with information – a 
crucial aspect for both domains – demands critical/evaluative thinking based 
on rational thinking processes and decisions (Aizikovitsh-Udi, 2012). 
In order to explore thinking processes related to tasks in the domains of both 
Statistical Thinking and Critical Thinking, individual semi-structured 
interviews were conducted with mathematics teachers. By using 
mathematics teachers as subjects, basic content competence can be assumed 



 

and it becomes possible to examine their content-related higher order 
thinking skills, both in terms of statistical thinking and critical thinking.  The 
interviews focused on thinking-aloud when solving tasks and each lasted 
about 40–50 minutes. Figure 1 shows a sample task. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Task “tablets” (Kuntze, Lindmeier & Reiss, 2008) 
 
Looking at both CT and ST, the interviews appeared to highlight how 
elements of CT can contribute to ST, for example when evaluating data, its 
presentation and analysis, planning data collection, etc. Conversely, aspects 
of ST like dealing with statistical variation and uncertainty were shown to 
contribute to CT, especially when it comes to decisions in non-determinist 
situations, where full data is unavailable. This study has shown that both ST 
and CT skills can be evoked by the same task. We suggest that this models 
authentic and useful thinking practice more effectively than a more closed 
task that stimulated only statistical thinking and the application of taught 
procedures. Connections clearly exist between Statistical Thinking and 
Critical Thinking at the level of individual reasoning practices. We suggest 
that an instructional program of hybrid tasks could provide the opportunity 
to employ Statistical Thinking, while simultaneously introducing students to 
the practices and structure of Critical Thinking. 
 

Designing covariation tasks to support students’ reasoning about 
quantities involved in rate of change 

Heather Lynn Johnson 

 A company produces two sorts of headache tablets. Both sorts have been tested in 
a laboratory with respectively 100 persons suffering from headache. The diagram 
below shows, how long it took until the headache was over. Each point represents 
one test person.  

 
 
Dr. Green: 
 
 
Find counter-arguments! 

Dr. Jenkins: 
 
 
Find counter-arguments! 

No, because ________________ No, because ________________ 

 

Tablet 1 is the better one! Tablet 2 is the better one! 

Tablet 1 

Tablet 2 

Time in minutes 



 

University of Colorado Denver 
Researchers using mathematical tasks involving dynamic representations of 
covarying quantities have supported secondary students’ forming and 
interpreting relationships between changing quantities (e.g., Johnson, 2012; 
Saldanha & Thompson, 1998). Taking into account students’ emergent 
conceptions of rates of change, the design of this covariation task sequence 
provided opportunities for students to use non-numerical quantitative 
reasoning in situations involving constant and varying rates of change. By 
covariation tasks, I mean tasks that involve forming and interpreting 
relationships between changing quantities. 
Adapting the bottle problem to design covariation tasks 
I designed covaration tasks by adapting Thompson, Byerly, and Hatfield’s 
(2013) version of the well-known bottle problem (see Figure 1). 

 
Figure 1. Filling Rectangle and Filling Triangle Sketches 

The adaptation for middle school students resulted in a sequence of tasks. To 
accompany each task, I developed dynamic sketches linking a rectangle or 



 

right triangle “filling” with area to a graph representing shaded (“filled”) 
area as a function of height (Fig. 1). Students could vary the height of the 
rectangle or triangle by animating or dragging points H (Fig. 1, top) or D 
(Fig. 1, bottom), respectively, then predict and create a corresponding graph 
representing shaded area as a function of height. Additionally, students 
could drag point F (Fig. 1, top) to vary the width of the rectangle. 
Anticipating that students might interpret linked graphs iconically 
(Leinhardt, Zaslavsky, & Stein, 1990), in particular that graphs would 
represent pictures of filling rectangles or triangles, I chose to represent the 
height of the shaded region on the horizontal rather than the vertical axis. By 
affording students’ manipulation of dynamically linked representations, the 
dynamic sketches provided opportunities for students to form and interpret 
relationships between quantities. 
Task design principles 
In designing the task sequence, I provided students with opportunities to 
demonstrate that they conceived of rate of change as some attribute of a 
situation that could be measured. In the case of the filling rectangle and 
triangle situations, such a conception of rate of change could entail a student 
being able to envision the filling area as increasing in relationship to another 
changing quantity. 
To investigate how students might conceive of rate of change in the context 
of a filling rectangle or triangle situation, I began by asking students what 
changed and what stayed the same. This prompt provided students the 
opportunity to identify different attributes of the situation that could be 
measured. Once students demonstrated evidence of attending to a rate of 
change as something that could be measured in the context of the situation, I 
provided students with representations of constituent quantities (e.g., a graph 
representing area as a function of height) that could be used to quantify the 
measurable attribute students had just described. 
Task implementation results 
Students reasoning about area as a result of a numerical calculation 
interpreted variable increase as if it were constant. These students made 
sense of unfamiliar graphs by connecting shapes of objects to shapes of 
graphs such that rectangles elicit one type of graph and triangles elicit 
another type. Students’ work suggests that iconic interpretations of graphs 
extend to dynamic graphs such that dynamic graphs are pictures in motion. 
Students reasoning about area as a measurable attribute of a rectangle or 
triangle attended to variable increase in area when interpreting and/or 



 

predicting features of a graph relating area and side length. These students 
attended to variation in amounts of change in area, identified sections with 
different kinds of increases in area, and described variation in how area 
could increase as side length continually changed. Students attending to 
variable increase in area also interpreted dynamic sketches and graphs as 
relationships between quantities. 
Concluding remarks 
Using non-numerical quantitative reasoning, students can make predictions 
and create representations indicating how quantities might change together. 
Although representations included in the tasks explicitly indicate quantities 
of area and height, students may interpret the graphs shown in Fig. 1 as 
representing a relationship between area and elapsing time rather than area 
and height. The possibility for such interpretation highlights the complexity 
of designing tasks to provide students with opportunities to engage in rate-
related reasoning. Future iterations of implementation and analysis could 
provide further explanation as to how students’ non-numerical reasoning 
develops when constructing relationships between quantities. 
 
ISSUE THREE: THEORETICAL FRAMEWORKS BY WHICH 
STUDENT PARTICIPATION IN MATHEMATICAL TASKS MIGHT 
BE BETTER UNDERSTOOD AND OPTIMIZED 
Applying the phenomenographic approach to students’ conceptions of 
tasks 

Kimberly Gardner 

Kennesaw State University, USA 

Tasks serve a communicative purpose between teacher and student, by 
conveying the teacher’s intent for learning and the student’s conception of 
that intent.  Often, responses or work produced by students from a task 
reveal a disconnect between the teacher’s learning expectation and the true 
depth of knowledge attained by the student.  By applying the descriptions of 
an outcomes space from a phenomenographic inquiry to student work 
samples, I will discuss how this approach informs a framework for 
connecting a student’s conception of learning to the quality of the 
individual’s task engagement.  
Phenomenography is a research methodology with its own theoretical 
framework that accounts for the qualitatively different ways people 



 

experience learning.  From this theoretical stance, the impact a task has on 
learning may be analysed using the outcome space of student conceptions 
about the learning.  By analysing a student’s conception of, and approach to 
learning, the relationship between focal awareness and task performance is 
further documented.  The analysis is guided by the question: “What do 
students focus on when assigned a task, and in what way does the work 
produce communicate to the teacher the student’s personal epistemology of 
the content to be learned?”  
Learning is defined as perceiving, conceptualizing, or understanding 
something in a new way by discerning it from and relating it to a context.  
Furthermore, learning involves two aspects: i) what is to be learned, and ii) 
how one goes about learning (Marton & Booth, 1997).  The learner’s 
perspective of what is to be learned is derived from the student’s definition 
of the direct object of learning.  How the learner assigns meaning to the 
learning object is determined by the learning strategies the student utilizes to 
meet personal learning goals. 
To maintain consistency with the phenomenographic definition of learning, 
a task is characterized by its relationship to the structural and referential 
aspects of the learning experience.  A task is a situation requiring the learner 
to experience the object of learning in such a way that the learner must 
discern components of the situation and how they are related (structural 
aspect), then assign a meaning to the situation (referential aspect). The task 
analysed in the study assessed student understanding of descriptive statistics 
and data analysis. 
Since the student’s conception is the unit of analysis, an explanation of what 
a student is attentive to when engaged in completing a task is warranted. The 
basic components of awareness are appresentation, discernment, and 
simultaneity (Marton & Booth, 1997).  Appresentation refers to being 
conscious of a perceptual or sensual experience in the presence of concrete 
or abstract entities; discernment involves recognizing a foreground-
background structure of a situation; simultaneity means knowing how the 
discerned parts are related to the whole structure.  The structure of a 
student’s focal awareness directly informs the way the student understands 
content, which leads the student to perceive that something has been learned.   
Collectively, the various levels of student performance in the class fell into 
the first three conceptions of the learning of statistics outcome space. The 
majority of the students met the level of knowledge attainment deemed 
acceptable to teacher. This finding supports the proposition that the meaning 



 

and purpose a student assigns to a task seem to be aligned with the student’s 
meaning of learning, approaches to learning, and capabilities sought as a 
result of learning. 
 

The milieu and the mathematical knowledge aimed at in a task 
Heidi Strømskag 

Sør-Trøndelag University College 
Context and theoretical background 
The research question addressed in the paper is: How does the milieu 
devolved to the students for algebraic generalisation of shape patterns 
influence their mathematical activity? A gap between the teacher’s intention 
with a task and the students’ mathematical activity is explained in terms of a 
lacking coordination between the knowledge aimed at (an equivalence 
statement) and the milieu (Brousseau, 1997) devolved to the students.  
Participants in the reported research are two groups of three student teachers 
enrolled at a teacher education programme for primary and lower secondary 
school in Norway, and a teacher educator who teaches mathematics to these 
students. The data are a mathematical task and transcripts from video-
recorded small-group sessions where the students engage with the task. The 
theory of didactical situations in mathematics (Brousseau, 1997) has been 
used to analyse the empirical material.  
A shape pattern in elementary algebra is usually instantiated by some 
consecutive geometric configurations in an alignment imagined as 
continuing until infinity. According to Måsøval (2011), there are two types 
of shape patterns: arbitrary patterns (Figure 1), and conjectural patterns 
(Figure 2).  

                       
    Figure 1. An arbitrary pattern                    Figure 2. A conjectural pattern 

These patterns correspond respectively to two different mathematical objects 
aimed at in the process of generalising (Måsøval, 2011): formula (for the 
general member of the sequence mapped from the shape pattern; e.g., 

3 1na n= +  in Figure 1), and theorem (a general numerical statement; e.g., 
21 3 5 2 1n n+ + + + − =L  in Figure 2).  



 

A priori analysis: the milieu 
The pattern in Task 3 (with which the students engaged) is intended to be a 
conjectural pattern, aiming at the formulation of a theorem. It is made of a 
first milieu (Shape pattern 1, in Figure 3) that evolves (Shape pattern 2 with 
white squares, in Figure 4).  

                          
       Figure 3. Shape pattern 1                     Figure 4. Shape pattern 2 
For the teacher, the role of Shape pattern 1 is to provide students with the 
elements to formulate the theorem “the sum of the first n odd numbers is 
equal to the square of n”, first in words and then algebraically: 

21 3 5 2 1n n .+ + + + − =L  It is important to notice that the solution of the 
problem (proof of the theorem) can be reached without the algebraic 
formulation by direct manipulation the elements of the pattern. A generic 
example of this manipulation (made by me) is shown in Figure 5. 

 
Figure 5. The third element manipulated into a 3x3 square 

An alternative shape pattern that would illustrate that the n-th square number 
is equivalent to the sum of the first n odd numbers is the pattern shown in 
Figure 2 above (where the relationship is visualised directly). The pattern 
would then play the role of a “real milieu” in the sense of Brousseau (1997). 

Because of that, the algebraic formulation ( ) 21 3 5 2 1n n+ + + + − =L  does 
not appear as a necessary tool to construct the proof of the theorem; it is just 
a way to formulate a mathematical statement with symbols. In this respect, 
the pattern is a real milieu when it is considered as a geometrical 
representation of an arithmetical sequence, in that the elements of the pattern 
can be represented arithmetically ( 2 2 21 1 ,  1 3 2 ,  1 3 5 3 ,  etc.= + = + + = ) and 
serve as a “model” that can guide a process of algebraic thinking that aims at 
the equivalence statement 21 3 5 2 1 .n nL+ + + + − =  Here, the elements of 
the pattern serve as referents for first arithmetic and then algebraic symbols, 
the algebraic formulation being here only a tool to state the equivalence.  



 

Results from the analysis of the transcript data show that: 1) The students 
produce adequate solutions to subtasks, but this does not constitute a milieu 
for the formulation of the mathematical statement aimed at. This is 
consistent with the a priori analysis presented above. 2) There is a weakness 
in the milieu caused by missing clarification of the concept of mathematical 
statement.  
Task 3 is focused on calculations (how many), but the intended knowledge is 
theoretical. Hence the focus should be on why the sum of the first n odd 
numbers is equal to the square of n. This question has potential to create the 
need to use algebra.  

ISSUE FOUR: ACCOMMODATING STUDENT RESPONSES AND 
STUDENT AGENCY WITHIN THE INSTRUCTIONAL USE OF 
MATHEMATICAL TASKS 

Writing the Student into the Task: Agency and Voice 

Carmel Mesiti and David Clarke 
International Centre for Classroom Research, University of Melbourne 

The classroom performance of a task is ultimately a unique synthesis of task, 
teacher, students and situation. Task selection by teachers initiates an 
instructional process that includes task enactment (collaboratively by teacher 
and student) and the interpretation of the consequences of this enactment 
(again, by teacher and student). In undertaking this study, we examined the 
function of mathematical tasks in classrooms in five countries. A three-
camera method of video data generation (see Clarke, 2006), was 
supplemented by post-lesson video-stimulated reconstructive interviews 
with teacher and students, and by teacher questionnaires and copies of 
student work. Our analysis characterized the tasks employed in each 
classroom with respect to intention, action and interpretation and related the 
instructional purpose that guided the teacher’s task selection and use to 
student interpretation and action, and, ultimately, to the learning that post-
lesson interviews encouraged us to associate with each task. 
The eighth-grade mathematics classrooms that provided the sites for our 
analysis were drawn from the data set generated by the Learner’s 
Perspective Study (LPS) (Clarke, 2006). Our initial goal in the analysis of 
mathematical tasks undertaken in these classrooms was the selection of tasks 
that could legitimately be described as distinctive because of the character of 



 

the mathematical activity or because of the teachers’ didactical moves in 
utilising the tasks to facilitate student learning.  
The tasks were selected for their disparity across the key attributes: 
mathematics invoked (both content category and level of sophistication); 
figurative context (real-world or decontextualised); resources utilised in task 
completion (diagrams and other representations); and the nature of the role 
of the task participants. Two examples are noteworthy:  
Japan School 3 – Lesson 1 (the Long Task) 
In this task, the seemingly simple pair of simultaneous equations 5x + 2y = 9 
and -5x +3y = 1 engaged the class for a fifty-minute lesson (and indeed was 
the discussion point for the first fifteen minutes of the following lesson). A 
feature of the performance of this task was the extent to which student 
suggestions, responses and the articulation of their thinking were regarded as 
instruments for developing understanding. 
Shanghai School 3 – Lesson 7 (the Train Task) 
In relation to mathematical tasks, Clarke and Helme (1998) distinguished the 
social context in which the task is undertaken from any ‘figurative context’ 
that might be an element of the way the task is posed. In this sense, the task:  

Siu Ming’s family intends to travel to Beijing by train during the national 
holiday, so they have booked three adult tickets and one student ticket, 
totalling $560. After hearing this, Siu Ming’s classmate Siu Wong would 
like to go to Beijing with them. As a result they buy three adult tickets and 
two student tickets for a total of $640. Can you calculate the cost of each 
adult and student ticket? 

has a figurative context that integrates elements such as the family’s need to 
travel by train and the familiar difference in cost between an adult and a 
student ticket. The social context, however, could take a wide variety of 
forms, including: an exploratory instructional activity undertaken in small 
collaborative groups; the focus of a whole class discussion, orchestrated by 
the teacher to draw out existing student understandings; or, an assessment 
task to be undertaken individually. In each case, the manner in which the 
task will be performed is likely to be quite different, even though we can 
conceive of the same student as participant in each setting. 
Students were given a significant “voice” in the completion of each task, but 
the nature of their participation reflected differences in the extent and 
character of the distribution of responsibility for knowledge constructed in 
the course of task completion. This distribution of responsibility (or 



 

enhanced agency) is a consequence of each teacher’s strategic decision, 
moment by moment, of how best to orchestrate student work on the task. We 
see task performance as the iterative culmination in the joint construction, 
not only of the task solution, but of the mathematical principles of which the 
task is model and purveyor. 
Concluding Remarks 
Of particular interest in our analysis were differences in the function of 
mathematically similar tasks, dealing with similar mathematical content 
(those relating to systems of linear equations), when employed by different 
teachers, in different classrooms, for different instructional purposes, with 
different students. The “entry point” for our analysis was a tabulation of the 
details related to the social performance of the task. Using these tables, our 
analysis drew on the video-stimulated, post-lesson interview data to identify 
intention and interpretation and relate both to social performance of the task. 
The significance of differences between social, cultural and curricular 
settings, together with differences between participating classroom 
communities, challenges any reductionist attempts to characterize 
instructional tasks independent of these considerations. The attention given 
by competent teachers to student voice and student agency, and the 
mathematical tasks that they employ to catalyse that voice and agency, 
support our belief that the maximization of student agency and voice in the 
performative enactment of a mathematical task should be recognized as a 
key principle of task design and delivery. 

Emergent tasks: Spontaneous design supporting in-depth learning 
Angelika Bikner-Ahsbahs 

Bremen University, Germany 
According to Bruder (2000), a task can be regarded as a triplet of an initial 
state, a final state and a transformation that transforms the initial state into a 
final one. Even adaptive mathematical tasks such as self-differentiating tasks 
designed before the lesson can only support optimal learning if the teacher 
also is able to spontaneously transform the situation into a fruitful epistemic 
process (Prediger and Scherres, 2012). How can such transformations be 
achieved? This question is addressed by the concept of emergent tasks. 
Emergent tasks are ad-hoc tasks created by the teacher when the teacher 
conceives the mathematical potential of a learning opportunity and translates 
it into a task, so that 

• the students’ interest present in the situation is taken up and 



 

• acute mathematical problems and questions are addressed 
adaptively. 

Our investigation of emergent tasks aims at elucidating how the gap between 
the students’ epistemic needs and the affordances of a task can be bridged.  
In order to identify emergent tasks in empirical situations, four types of tasks 
are distinguished (see Vogt 2012, p. 35):  

Task type Students express 
interest 

The teacher formulates an 
adaptive task for a situation 

prepared task - - 
spontaneous task - yes 
missed emergent task yes - 
emergent task yes yes 

Table 1: types of tasks 
A prepared task is constructed before the lesson, it may or may not be 
adaptive or meet the students’ interests. A spontaneous task is acutely 
created by the teacher in order to support a specific learning situation, it is 
not a requirement that it meets the students’ interest. However, if a student 
shows interest in a problem but the teacher does not take this opportunity up 
to transform the situation into a suitable learning opportunity the teacher has 
missed setting an emergent task, in such a case we observe a missed 
emergent task.  
Emergent tasks often appear when the initial and/or the final state of a 
problem are not clear to the students. If a student expresses epistemic 
interest for clarification, the teacher may translate this task into a more 
adaptive one, thus creating an emergent task. The students’ may also 
explicitly express a different epistemic need, in this case the teacher has the 
chance to set an adaptive, hence, emergent task. If the students’ epistemic 
need is implicit, the teacher may act in a sensitive way for instance by 
prompts (“please tell us what you mean”) to make the student’s problem 
visible and then formulate an emergent task. In addition, we found emergent 
tasks that unveiled an epistemic gap that initially remained unnoticed by the 
students. 
Our investigations of emergent tasks has yielded two results: (1) An 
emergent task has the tendency to initiate further emergent tasks leading to a 
sequence of fruitful learning opportunities that sometimes shape more than 



 

one lesson; (2) based on an initial emergent task we gained five design 
principles for building a task sequence on learning a procedure: emergent 
task (the teacher is reacting to a student’s interest), presenting and 
questioning (the students’ solutions of the task are presented and 
questioned), using and checking (an interesting student solution is used and 
checked by the other students), expanded use and application (the potential 
in use is evaluated by an expanded task), and institutionalization 
((individual) textualization of the procedure). 
On the part of the teacher our studies point to the following conditions that 
enable the teacher to perform appropriate translations of learning situations 
into emergent tasks: “The teacher must 

• have mathematical knowledge that extends the content of the lesson, 
• show interest in the students’ learning processes, 
• and be open for unusual ways on the part of the students. She or he 

must be willing to abstain from the planned course” (cf. Bikner-
Ahsbahs & Janßen, 2013, p. 162). 

MATHEMATICAL TASKS AND THE STUDENT – MOVING 
FORWARD 

The didactical relationship between the student as learner of 
mathematics and the mathematical task as facilitating that learning 

The research reports present complementary perspectives on the student-task 
relationship and demonstrate just how diverse are the considerations 
affecting the instructional deployment of tasks and their role in facilitating 
student participation in particular types of mathematical activity 
Furthermore, considerable diversity is evident in the descriptions of the 
positioning of students within that mathematical activity, particularly with 
respect to the agency afforded to students to determine the nature of their 
participation. The socio-didactical tetrahedron provides a reflective structure 
within which to discuss the various research reports. 
Teacher-student-task (Face A): In the mathematics classroom, the teacher, 
the student and the tasks provide the key structural elements through which 
the classroom’s social activity is constituted. There has long been a tacit 
assumption that the completion of mathematical tasks chosen or designed by 
the teacher will result in the student learning the intended mathematics. This 
view is persistent despite research that suggests this is not a direct 
relationship (Margolinas, 2004, 2005).  



 

Student-task-mathematics (Face B): For some time, theories of learning 
have viewed cognitive activity as not simply occurring in a social context, 
but as being constituted in and by social interaction (e.g., Hutchins, 1995). 
From this perspective, the activity that arises as a consequence of a student’s 
completion of a task is itself a constituent element of the learning process 
and the artifacts (both conceptual and physical) employed in the completion 
of the task serve simultaneous purposes as scaffolds for cognition, 
repositories of distributed cognition and as cognitive products. 
Teacher-task-mathematics (Face C): Task development, selection and 
sequencing by teachers represents the initiation of an instructional process 
that includes task performance (collaboratively by teacher and student) and 
the interpretation of the consequences of this enactment (again, by teacher 
and student). 
Teacher-mathematics-student (Face D – base): The original didactical 
triangle has the virtue of connecting the classroom participants with the 
knowledge domain that provides the pretext for their interaction. As noted, 
however, the connections represented by the sides of the original didactical 
triangle require mediation by artifacts; in this case, tasks. The theory of 
didactical situations (Brousseau, 1997) provides a conceptualisation of the 
didactic relationship between the teacher, the mathematics and the student. 
Here, the mathematical task is part of the milieu, which models the elements 
of the material and intellectual reality on which the students act. 
One of the dangers for both research and instructional design lies in the 
disconnection of the elements of the socio-didactical tetrahedron for 
separate, typically pairwise, study. For example, analysis of student response 
to a particular task independent of the instructional/learning context in which 
the task is encountered could understate the complexity of the activity under 
investigation by backgrounding considerations central to task completion, 
such as teacher intention, student interpretation, and curricular and 
organisational context. During the process of task completion, the 
effectiveness of the task in promoting learning will also be contingent on 
student intention (with respect to the task) and teacher interpretation (with 
respect to the students’ activity). These socio-mathematical considerations 
are central to any attempt to understand (and thereby optimize) the function 
of tasks in catalyzing student mathematical activity and consequent learning 
in institutionalized settings such as mathematics classrooms. 
Some of these considerations can be summarised in the form of questions: 
• What problem does the student think she is solving? 



 

•  What student-related factors determine the optimal selection and 
sequencing of tasks for instructional purposes? 

•  What are the student-related considerations affecting the use of 
mathematical tasks to promote students’ higher order thinking skills? 

•  What contribution does the student make to the performative shaping of 
the task and how is this contribution accommodated within available 
theoretical frameworks? 

•  What degree of agency can the student realistically be afforded in the 
framing and performance of a mathematical task, if the teacher’s 
instructional agenda is to be achieved? 

These questions have been addressed to varying degrees in the papers that 
comprise this Research Forum. It is useful to review some of the key points 
made by each contribution. 
A recurrent theme in the framing of this Research Forum was the tension 
between the teacher’s instructional intentions and consequent student 
activity. Coles and Brown suggest that an emphasis on making distinctions 
foregrounds the targeted mathematical awarenesses that are otherwise only 
indirectly prompted by instruction based on different principles. This 
reduces the possibility of divergence of teacher intention and student activity 
by actively stimulating those student capabilities directly. Giménez, Palhares 
and Vieira investigated the role of task order in promoting algebraic 
thinking, by making comparison between instruction that commenced with 
sequential or structural tasks. This sensitivity to task sequence rather than 
simply to the quality or effectiveness of the individual tasks per se, 
introduces an additional consideration to the question of how best to utilise 
tasks to promote student learning. Savard, Polotskaia, Freiman and Gervais 
examined the contemporary premise that some problems (or tasks) are 
particularly difficult because they require a flexible and holistic analysis of 
their mathematical structure while easy problems do not require such 
analysis. The emphasis on the capacity of tasks to facilitate student 
consideration of mathematical relationships rather than simply mathematical 
operations introduces additional considerations in the design of instructional 
tasks.  
In combination, these three studies usefully demonstrate the diversity of 
considerations invoked by the different aspirations pertaining to specific 
organisational and curricular settings. The interplay of these considerations 
can be seen in the significance of the students’ response to a task and the 



 

sensitivity of that response to task characteristics, including task order. This 
interplay is most evident in the implicit compromise between prescription 
and devolution, undertaken in order to provide opportunities for the 
expression of student agency, while still holding out some hope that student 
activity and learning might resemble the teacher’s instructional intentions. 
The papers by Aizikovitsh-Udi et al. and Johnson identify some of the 
challenges faced by task designers hoping to elicit something more 
sophisticated than the replication of a taught procedure. The dynamic 
between promoting the development of mathematics-specific skills and 
modes of thought and meeting the more encompassing aims of 
contemporary curricula is presented as potentially a productive symbiosis by 
Aizikovitsh-Udi and her co-authors. Johnson’s investigation of mathematical 
tasks involving dynamic representations of covarying quantities necessarily 
also documents student hypothesis formulation and associated mathematical 
reasoning. The capacity of her tasks to frame, shape and facilitate 
sophisticated student reasoning mirrors the capacity of the hybrid tasks of 
Aizikovitsh-Udi et al. to simultaneously stimulate statistical and critical 
thinking. Given the aspirations of contemporary curricula towards promoting 
higher order thinking skills, these two papers provide cause for optimism. 
Our use of the socio-didactical tetrahedron to frame this Research Forum has 
already placed a Vygotskian slant on our conception of the process of 
mathematics learning and the role of instructional tasks in facilitating that 
learning process. Without wishing to be theoretically exclusive, we would 
argue that recognizing the function of mathematical tasks as tools for the 
facilitation of student learning leads us to the further useful recognition that 
the use of a tool (i.e. a task) fundamentally affects the nature of the 
facilitated activity (i.e. student learning). This does not preclude the use of 
other theoretical perspectives in the analysis and optimisation of task use in 
instruction. Phenomenographic approaches, as illustrated by Gardner, 
precisely capture the reflexive connection between the teacher’s use of tasks 
and the students’ conceptions of those tasks. The prioritisation of student 
perception of the object of learning aligns Gardner’s perspective with 
aspects of the paper by Coles and Brown. However, Gardner adds a layer of 
sophistication in her consideration of the student’s perception of and 
response to a given task as the social enactment of the student’s conception 
of learning. This perspective accords a level of significance to student 
intellectual agency that both complicates and enhances our consideration of 
the student-task axis and its significance within the socio-didactical 
tetrahedron. The paper by Strømskag draws together several considerations: 



 

the tension between intention and activity, and the role of the task in creating 
a mileu (Brousseau, 1997) conducive to the promotion and use of the 
targeted mathematical knowledge. The conditions governing the teacher’s 
capacity to orchestrate the creation of a milieu suitable for the development 
of the targeted mathematical knowledge are a direct consequence of the 
choice of instructional task. 
The research narrative concludes by directing attention to student agency. 
Examination by Mesiti and Clarke of task functionality through the lens of 
international comparison highlights differences in instructional purpose and 
curricular context, which shape the particular activity arising from the 
instructional use of a task in differently situated classrooms. In the paper by 
Bikner-Ahsbahs, tasks encompass initial and final states [of knowing] and 
their connecting transformation. Emergent tasks appear, fractal-like, where 
the learning situation requires the revision, refinement, or elaboration of the 
intended task, including the insertion into the lesson of an entirely 
unintended task, called upon in response to the demands of the particular 
didactical situation. In an interesting way, emergent tasks embody the 
teacher’s pedagogical agency through their incarnation of the teacher’s 
response to an instructional situation not anticipated in the lesson’s original 
planning. The implication is that teacher agency is best expressed in 
reflexive relation to student agency, but also in the provision of 
opportunities for the expression of that student agency. This recognition 
returns us to the assertion by Mesiti and Clarke that “the classroom 
performance of a task is ultimately a unique synthesis of task, teacher, 
students and situation” and reinvokes the socio-didactical tetrahedron. 
As a final recapitulation: There is a tension between the teacher’s 
instructional intentions (and associated actions) and the students’ consequent 
activity (and ultimate learning). This tension is probably inevitable and even 
productive. The existence of this tension should reassure us that student 
agency has not been precluded entirely from our classrooms. 
Equally, the tension is not one of opposition, but rather the recognition of the 
need for continual mutual adjustment. Both teacher and students are 
complicit in the construction of classroom practice; if the teacher appears to 
exert the greater control through task selection, the students can, by their 
responses, significantly determine the nature of consequent classroom 
activity. Within this process of incremental and iterative adjustment, the task 
serves as the frame for activity, while the activity constitutes the 
performance of the task. 



 

In the preceding discussion and the research narrative constituted through 
the various research reports, we have attempted to examine the instructional 
use of mathematical tasks, the roles played by students in the performance of 
those tasks, and the anticipation of those roles by teachers and task 
designers. The results of several of these analyses have been interpreted as 
indicating principles for instructional (task) design. Tasks and their social 
performance provide both a window into the practices of mathematics 
classrooms internationally and the means to realise our curricular ambitions.  
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